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We propose orbital fluctuations in a multiband ground state as the superconducting pairing mechanism in the
new iron-based materials. We develop a general SU�4� theoretical framework for studying a two-orbital model
and discuss a number of scenarios that may be operational within this orbital fluctuation paradigm. The orbital
and spin symmetry of the superconducting order parameter is argued to be highly nonuniversal and dependent
on the details of the underlying band structure. We introduce a minimal two-orbital model for the Fe-pnictides
characterized by nondegenerate orbitals that strongly mix with each other. They correspond to the iron “dxy”
orbital and to an effective combination of “dzx” and “dzy,” respectively. Using this effective model we perform
random-phase-approximation calculations of susceptibilities and effective pairing interactions. We find that
spin and orbital fluctuations are, generally, strongly coupled and identify the parameters that control this
coupling as well as the relative strength of various channels.
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I. INTRODUCTION

The recently discovered1–8 iron-based superconducting
oxides with a transition temperature as high as 55 K bring up
the immediate important question of the mechanism under-
lying superconductivity in this new class of materials. An
obvious temptation is to connect the superconductivity in
these new materials to that in the high-Tc cuprates based on
a number of compelling similarities: layered two-
dimensional �2D� nature of both classes of compounds,
multi-element oxide nature of the materials in both cases,
key role of doping with the undoped materials being nonsu-
perconducting, importance of nearby magnetic states whose
suppression leads to superconductivity, and relatively high
superconducting transition temperatures. We argue here theo-
retically, using very general considerations, that in spite of
these tantalizing similarities between the cuprates and the
new Fe-based superconductors, there is a very important
qualitative difference which suggests that the nature of su-
perconductivity in the Fe-based oxides is likely to be differ-
ent from that of the cuprates. In particular, the hallmark of
the Fe-based superconductors seems to be the multiband na-
ture of their low-energy band structure as revealed by first-
principles band-structure calculations,9–14 and as such, or-
bital fluctuations are likely to be a crucial ingredient of
physics in these new materials. We propose in this paper that
the superconductivity in the Fe-based oxides is driven by
orbital fluctuations �which are invariably coupled to the spin
fluctuations, as described below� in the multiband ground
state, which have no analog in the standard model of the
high-Tc cuprates. The existence of multiple bands at the
Fermi surface gives rise to a paradigm, namely, the possibil-
ity of a superconducting pairing mechanism driven by orbital
fluctuations, which we believe are the underlying cause for
the high-temperature superconductivity in these materials.

To explore the possibilities opened by this paradigm we
study an effective two-band tight-binding model of the FeAs
planes. Band-structure calculations show that the electronic
character near the Fermi level is mostly determined by the d

orbitals of Fe �Ref. 15� and that all five orbitals participate in
the formation of the Fermi surface.12 However, there are sev-
eral reasons that make the study of a simple two-band effec-
tive model highly relevant. First, a two-band model is the
ideal minimal model that combines the requirements for ob-
serving multi-orbital physics with a relative simplicity that
makes this physics transparent. Second, local-density ap-
proximation �LDA�-type calculations9–14 have shown that the
undoped16–19 material is characterized by five Fermi sheets:
two quasi-2D electron pockets located near the M point of
the Brillouin zone and two quasi-2D and one three-
dimensional �3D� hole pockets in the vicinity of the � point.
However, upon electron doping the 3D hole pocket disap-
pears and the 2D hole pockets shrink rapidly. Moreover,
strong-coupling calculations15 suggest that at finite doping
the bands responsible for the electron pockets clearly cross
the Fermi level, while the hole pockets around the � point
are barely identifiable. These preliminary results suggest that
the low-energy physics responsible for superconductivity in
the iron-based compounds may be governed by the two-
bands associated with the electron pockets, and therefore, an
effective two-band model would be an appropriate way to
describe it. Nonetheless, as we show below, the nature of the
orbitals that participate in the formation of these bands, as
well as the strength and symmetry of the hybridization be-
tween them, have direct consequences for the pairing mecha-
nism. Furthermore, to completely clarify the key question of
the relative importance of the electron and hole pockets in
the low-energy physics of the FeAs layers as a function of
doping, further calculations involving momentum-dependent
self-energy effects are necessary.

The general analysis described in Sec. II has three main
objectives. First, in order to disentangle and describe unam-
biguously various possible types of fluctuations, we intro-
duce a set of generators of the SU�4� group associated with
on-site rotations. We identify the operators that describe
charge, spin, as well as charge-orbital and spin-orbital-
coupled degrees of freedom. We then express the bare inter-
action, as well as the effective interaction, in terms of these
operators and identify the couplings corresponding to the
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relevant channels. The second objective is to classify all pos-
sible pair operators, which in this particular case are combi-
nations of spin and orbital singlets and triplets, and express
the interaction in terms of these pair operators in a manner
suitable for mean-field calculations. The coupling constants
corresponding to each possible pairing channel will be ex-
pressed in terms of the effective interactions introduced in
step one. We identify the channels susceptible to generate
pairing and determine the role of orbital fluctuations in the
mechanism leading to superconductivity. We show that the
bare interactions cannot generate pairing, but the inclusion of
orbital and/or spin fluctuations opens multiple possibilities
for pairing. The specific spin-orbital symmetry of the super-
conducting order parameter is highly nonuniversal and de-
pends on the details of the underlying band structure and on
the coupling constants.

The paper is organized as follows. In Sec. II we describe
in detail a general framework suitable to describe the physics
of the SU�4� spin-orbital space that characterizes a two-
orbital effective model. We also introduce a distinction be-
tween inter-orbital and interband pairings and discuss several
general pairing scenarios that may be at work in a two-
orbital system, emphasizing the role of the orbital degrees of
freedom. In Sec. III we introduce our effective two-band
model for the Fe-pnictides and compare it with other two-
orbital models. Using this effective model, we calculate the
spin and orbital susceptibilities and the corresponding renor-
malized interactions at the random-phase-approximation
�RPA� level. The results are presented in Sec. IV. We show
explicitly the role of the orbital degrees of freedom and point
out the highly nonuniversal nature of the pairing problem in
multi-orbital systems. Section V contains a summary of this
work and our final conclusions.

II. GENERAL SU(4) FORMALISM FOR TWO-ORBITAL
MODELS

We start with a two-orbital minimal model given by the
Hamiltonian H=Ht+HU. Explicitly, the kinetic term is

Ht = �
i,j

�
m,n�

tij
mncim�

† cjn� − � �
i,m,�

cim�
† cim�, �1�

where tij
mn are hopping matrix elements between the n orbital

at site j and the m orbital at site i, �� �↑ ,↓� is the spin label,
and � is the chemical potential. The energy bands for the
noninteracting system are obtained by diagonalizing the ma-
trix �mn�k� which is the Fourier transform of tij

mn. The inter-
action term contains contributions from the on-site intraband
�U� and interband �U�� repulsions, as well as the Hund cou-
pling J and pair hopping J�,

HU = U�
i,m

nim↑nim↓ + U� �
i,�,��

ni1�ni2��

− J�
i,�

�ni1�ni2� + ci1�
† ci1�̄ci2�̄

† ci2��

− J��
i,�

�ci1↑
† ci1↓

† ci2↑ci2↓ + ci2↑
† ci2↓

† ci1↑ci1↓� . �2�

Next, we introduce the generators Xi
�� of the SU�4� group

defined as20

Xi
�� = �

s,s�
�

m,m�

cims
† �ss�

� �mm�
� cim�s�, �3�

where �̌0= Ǐ2	2 is the identity matrix and �̌
, with 

� �1,2 ,3�, are the Pauli matrices. For a two-band model
�̌�� �̌�. There is a total of 16 X operators. Notice that Xi

00

represents the charge, while Xi

0=2Si


 represents the pure
spin. Similarly, Ti


=Xi
0
 are the charge-orbital operators,

while the nine operators Xi

� with 
 ,�� �1,2 ,3� correspond

to the spin-orbital-coupled degrees of freedom.
Including the effects of fluctuations, the effective interac-

tion Hamiltonian has the form,

HU
eff =

1

16�
q

�
������

�̃�������q�Xq
��X−q

����, �4�

where Xq are Fourier components of the X operator and the
factor 1/16 was introduced for later convenience. In the most

general case �̃ is a 16	16 matrix. However, as we are in-
terested in studying fluctuations of a paramagnetic state char-
acterized by SU�2� spin symmetry, the effective interaction
Hamiltonian is rotationally invariant in spin space and the

matrix �̃ becomes block diagonal, with one 4	4 block cor-
responding to the charge and charge-orbital degrees of free-
dom and three 4	4 identical blocks corresponding to the
spin and spin-orbital-coupled degrees of freedom. Explicitly
we have

�̃������q� = ���
�c��q�
�0
��0 + ���

�s��q�
�

��
, �5�

where 
� �1,2 ,3�. The effective coupling matrices ��c��q�
and ��s��q� can be obtained diagrammatically starting with
the bare couplings. Before writing explicitly these bare cou-
plings in terms of the original interaction parameters U, U�,
J, and J�, let us make two observations. First, we note that
the two-particle operators appearing in the interaction Hamil-
tonian �2� are generated by diagonal combinations Xi

��Xi
��,

while the off-diagonal contributions Xi
��Xi

�� with ��� gen-
erate new operators that do not appear in HU; so we expect
the matrices �0�c/s� to be diagonal. Second, we notice that,
while expressing HU in terms of X operators is always pos-
sible �up to a constant energy shift�, there is no unique choice
for the coupling matrices �0�c/s�. For example, terms propor-
tional to the on-site intra-orbital interaction operator D
=�mcim↑

† cim↓ are generated in the charge channel, Xi
00Xi

00, the
charge-orbital channel Xi

03Xi
03, as well as in the spin channel

Xi

0Xi


0, and the spin-orbital channel Xi

3Xi


3. Consequently,
there are distinct linear combinations of products of X opera-
tors equal to D. Our choice is based on the following two
conditions: �i� the linear combinations of products of X op-
erators should be invariant under spin rotations and �ii� to
each channel that generate a certain term of the interacting
Hamiltonian, we will ascribe a proportional fraction of the
corresponding coupling constant. Using this procedure we
obtain
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�0�c� = diag��U + 2U� − J�,

�− U� + 2J + J��,

�− U� + 2J − J��,

�U − 2U� + J�� ,

�0�s� = diag��− U − J�,

�− U� − J��,

�− U� + J��,

�− U + J�� . �6�

We begin our second task by classifying the pair operators

�̂ab�k� defined as linear combinations of products
ckms

† c−km�s�
† . We choose combinations that are symmetric or

antisymmetric under permutations of the spin �orbital� indi-
ces, representing the spin �orbital� triplet and singlet chan-

nels, respectively. In the notation �̂ab�k� the first index refers
to the orbital degree of freedom and takes the value a=s for
the orbital singlet and a� �t1 , t2 , t0� for the orbital triplets.
The spin index is b=s for the spin singlet and b� �t+ , t− , t0�
for the spin triplets. With these notation the 16 independent
pair operators are

�̂tmt�
�k� = ckm�

† c−km�
† ,

�̂t0/st�
�k� =

1
	2

�ck1�
† c−k2�

† � ck2�
† c−k1�

† � ,

�̂tmt0/s�k� =
1
	2

�ckm↑
† c−km↓

† � ckm↑
† c−km↓

† � ,

�̂ab�k� =
1

2
�s1ck1↑

† c−k2↓
† + s2ck1↓

† c−k2↑
† + s3ck2↑

† c−k1↓
†

+ s4ck2↓
† c−k1↑

† � , �7�

where m� �1,2�, �� �↑ ,↓�, and the set of signs �s1 ,s2 ,s3 ,s4�
takes the values �+, + , + ,+� for �ab�= �t0t0�, �+,−, + ,−� for
�ab�= �t0s�, �+, + ,− ,−� for �ab�= �st0�, and �+,−,− ,+� for

�ab�= �ss�. Note that all the singlet-singlet and triplet-triplet
pair operators are odd functions of momentum, �̂ss�−k�=
−�̂ss�k� and �̂tt�−k�=−�̂tt�k�, consequently pairing involv-
ing these operators occurs in the p-wave channel. On the
other hand, the singlet-triplet and triplet-singlet pair opera-
tors are even functions of k, �̂st�−k�= �̂st�k� and �̂ts�−k�
= �̂ts�k�, and are involved in s-wave or d-wave pairing.

Using Eq. �7� we express the effective Hamiltonian �4� as

HU
eff 
 �

k,k�
�

a,b,a�,b�

W̃aba�b��k,k���̂ab�k��̂a�b�
† �k�� , �8�

where, as usual, we retain only contributions of the form
ck1m1s1

† ck2m2s2

† ck1�m1�s1�
ck2�m2�s2�

with k2=−k1 and k2�=−k1�. Be-
cause of the symmetry properties of the pair operators, most

of the elements of the W̃ matrix are in fact zero. The nonva-

nishing elements are Wss=W̃ssss, describing the pairing inter-
action in the orbital-singlet spin-singlet channel, Wst

=W̃stbstb
, with tb� �t+ , t− , t0� representing the orbital-singlet

spin-triplet pairing, plus two 3	3 matrices, �Wtt�ta1
ta2

=W̃ta1
tbta2

tb
and �Wts�ta1

ta2
=W̃ta1

sta2
s, corresponding to the

orbital-triplet spin-triplet and orbital-triplet spin-singlet
channels, respectively. Note that the coupling matrices are
degenerate with respect to the spin-triplet label tb.

Next we express the pairing interaction Wab in terms of
the effective coupling constants ���

�c/s�. In order to simplify
the expressions, we will take into consideration only the di-
agonal contributions ���

�c/s� and �03
�c/s�=�30

�c/s� which is always
nonzero for nondegenerate orbitals and assume that all the
other coupling constants are negligible. With these assump-
tions, we have for the singlet-singlet and singlet-triplet chan-
nels

Wss =
1

16
��00

− − �11
− − �22

− − �33
− � ,

Wst =
1

16
��00

+ − �11
+ − �22

+ − �33
+ � , �9�

with ���
+ =���

�c� +���
�s� and ���

− =���
�c� −3���

�s� . The triplet-triplet
pairing matrix becomes

Wtt = ��00
+ + �33

+ + 2�03
+ �11

+ − �22
+ 0

�11
+ − �22

+ �00
+ + �33

+ − 2�03
+ 0

0 0 �00
+ + �11

+ + �22
+ − �33

+ � . �10�

A similar expression can be written for the triplet-singlet
channel, Wts, by making the substitution ���

+ →���
− . Express-

ing the pairing interaction in terms of the effective coupling
constants ��� completes our second objective and provides

the tools necessary for understanding orbital fluctuations me-
diated pairing.

Using the bare couplings �0 given by Eq. �6�, the pairing
interaction �Eqs. �9� and �10�� becomes
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Wtt
0 = �0 0 0

0 0 0

0 0 0
�, Wts

0 =
1

2�U J� 0

J� U 0

0 0 U� + J
� ,

Wss
0 = 0, Wst

0 =
1

2
�U� − J� . �11�

At this level, pairing could only appear in the s-wave channel
and have either orbital-triplet spin-singlet or orbital-singlet
spin-triplet character. The necessary conditions are U��J or
U�J�. If we use parameters characterizing isolated Fe at-
oms, these conditions are certainly not satisfied, as J ,J�
�U ,U�. Even if we consider that the two-band effective
model should contain renormalized values of these cou-
plings, it is not very likely that these conditions, especially
U�J�, be realized.21 We conclude that at the bare level,
pairing is unlikely to occur. Theoretically, it may be realized
only in the orbital-singlet spin-triplet channel if U��J.22 The
stability of this channel in the presence of fluctuations will
be discussed in Sec. IV.

Before discussing the role of fluctuations, we need to
clarify the concepts of inter-orbital and interband pairings.
In the absence of hybridization between orbitals, tij

mn=0 �or
�nm�k�=0� for n�m, the wave-vectors k and −k character-
izing pair operators of the type ckn�

† c−km��
† cannot be chosen

to lie on the Fermi surfaces corresponding to the different
orbitals except when they are degenerate or at points of ac-
cidental degeneracies.23,24 The interpocket orbital-singlet
spin-triplet pairing discussed in Ref. 23 corresponds to this
situation. For the sake of clarity, we will use for this case the
term interband pairing. In contrast, for a nonzero hybridiza-
tion, the relevant momenta k and −k should be considered on
the Fermi surface produced by the energy bands En�k� ob-
tained by diagonalizing Ht �not on the orbital “Fermi sur-
faces” generated by �nn�k��. Assuming inversion symmetry,
the pair created by such an inter-orbital pair operator is well
defined for any Fermi momentum. Note that diagonalizing
the hopping Hamiltonian Ht is equivalent to performing a
unitary transformation ū�k�. Using this transformation we
can express orbital creation operators in terms of band cre-
ation operators as ckm�

† = ūm��k�dk��
† . Consequently, we can

project the orbital pair operator into the low-energy band and
obtain a band pair operator relevant for the low-energy phys-
ics. Note that the two operators may have different
symmetries.22 To set the stage for our discussion of the or-
bital fluctuations, we conclude that, because the phase space
available for interband pairing is in general very limited, this
type of pairing is not likely to play a significant role in the
mechanism responsible for superconductivity in the iron-
based compounds. In contrast, inter-orbital pairing has no
phase-space limitations and could be one of the key elements
that characterizes the physics of these multi-orbital supercon-
ductors.

In the presence of hopping, the effective interactions ���
c�s�

will acquire a momentum dependence. For example, at the
RPA level, the bare couplings �Eq. �6�� will be renormalized
by the susceptibility ����q�= 1

2�m,m�,n,n��kGnm�k
+q��mm�

� Gm�n��k��n�n
� , where Gnm�k� is the Green’s function



ckn�ckm�
† ��. It is convenient to express the elements of the

susceptibility matrix in terms of �̃mm�,nn��q�=�kGmm��k
+q�Gnn��k�. The diagonal elements become

�00�q� =
1

2
��̃11,11 + �̃12,21 + �̃21,12 + �̃22,22� ,

�11�q� =
1

2
��̃11,22 + �̃12,12 + �̃21,21 + �̃22,11� ,

�22�q� =
1

2
��̃11,22 − �̃12,12 − �̃21,21 + �̃22,11� ,

�33�q� =
1

2
��̃11,11 − �̃12,21 − �̃21,12 + �̃22,22� . �12�

The most significant off-diagonal components are �03�30�
= ��̃11,11��̃12,21��̃21,12− �̃22,22� /2, which couple the spin
susceptibility �00 and the longitudinal orbital-spin compo-
nent �33. Note that the rest of the off-diagonal components
��� depend on contributions of the form �̃ii,ij or �̃ij,j j that are
typically much smaller than the diagonal terms. Neglecting,
for simplicity, the off-diagonal susceptibilities, the renormal-
ized coupling constants become ���

�c/s��q�=���
0�c/s� / �1

+���
0�c/s�����q��. Based on this expression, together with Eqs.

�6�, �9�, �10�, and �12� we identify three simple pairing sce-
narios. To establish the exact relation between these sce-
narios and the physics of the iron-based superconductors,
detailed numerical calculations are necessary. Also, for cer-
tain values of the band and interaction parameters, more
complicated situations that do not involve a certain dominant
component of the susceptibility are possible �see Sec. IV�.

Scenario A. �̃nn,nn� ��̃nn,mm , �̃nm,n�m��, i.e., the intra-
orbital susceptibilities are dominant. This can be realized, for
example, when the Fermi surface is characterized by an ap-
proximate nesting with wave-vector Q and the hybridization
is negligible. The dominant elements of the susceptibility
matrix are �00 and �33. Considering expression �6� of the
bare interaction, we conclude that the strongest renormaliza-
tion will occur in the spin channel, �00

�s�, followed by the
spin-orbital channel �33

�s� and the charge-orbital channel �33
�c�.

However, in the presence of any nonzero Hund’s coupling J,
the pure spin channel will dominate. This translates into a
large negative contribution to �00

+ �Q� or a large positive
renormalization of �00

− �Q�. Regardless of channel, spin fluc-
tuations represent the driving force in this scenario. How-
ever, because �03 is generally nonzero, spin fluctuations
couple to the longitudinal spin-orbital fluctuations, thus en-
hancing �33

�s�. Very importantly, this coupling between the
spin and spin-orbital channels generates stronger fluctuations
and, consequently, a stronger renormalization of the effective
coupling constants in both channels. Notice that orbital fluc-
tuations, which renormalize �33

� , give contributions to Wst
and Wss, as well as to Wt0t and Wt0s, which are opposite in
sign to the contributions from the spin channel and, conse-
quently, are detrimental to pairing. In contrast, for Wt�t and
Wt�s, spin and orbital fluctuations have a similar effect on
pairing. Considering also that in �− the term ��s� has a coef-
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ficient −3, while in �+ the coefficient is +1, we conclude that
the most likely pairing in this scenario is orbital-triplet spin-
singlet pairing. This implies s-wave or d-wave symmetry for
the order parameter.

Scenario B. ��̃nn,nn , �̃nm,mn���̃nn,mm, i.e., the intra-orbital
components are large and the hybridization is strong. In this
case the off-diagonal terms �̃nm,mn contributing to �00 and �33
become important. The sign of these contributions at the rel-
evant wave-vector Q depends on the symmetry of the hy-
bridization �12�k�. A positive contribution will further en-
hance the spin fluctuations. On the contrary, a negative
contribution makes �33 larger than �00, and this could offset
the effect of the Hund coupling J and promote the spin-
orbital coupling �33

�s� as the main component of the pairing
interaction. Pairing in this scenario is mainly mediated by
either orbital fluctuations or spin fluctuations, depending on
the sign of �̃nm,mn, i.e., on the symmetry of the hybridization.
Note that the key ingredient leading to the further enhance-
ment of spin and spin-orbital fluctuations is the strong orbital
hybridization. We emphasize that in addition to the strength,
a key role is played by the symmetry of the inter-orbital
hybridization as it determines the sign of the off-diagonal
susceptibilities �̃nm,mn. As in scenario A, the coupling con-
stants that are most strongly renormalized are �00

�s� and �33
�s�,

leading to orbital-triplet spin-singlet pairing as the most
likely type of paring, with s-wave or d-wave symmetry for
the order parameter.

Scenario C. �̃nn,mm� ��̃nn,nn , �̃nm,n�m��, i.e., the inter-
orbital components are larger than the intra-orbital contribu-
tions in the vicinity of certain relevant Q vectors. In this
scenario the elements �11 and �22 of the susceptibility matrix
become the dominant components. Consequently, the main
contribution to the renormalized pairing interaction will
come from the effective couplings �11 and �22. The pairing
mechanism is now controlled by orbital fluctuations, as in
scenario B for negative off-diagonal susceptibilities �̃nm,mn.
However, this time it is the inter-orbital susceptibility that
leads to a strong increase in the effective coupling in the
charge-orbital and especially the spin-orbital channels. This
will translate into a positive momentum-dependent contribu-
tion to the even-parity channels, Wst and Wt0s, or a negative
momentum-dependent contribution to the odd-parity chan-
nels, Wss and Wt0t. However, because in ���

− the ���
�s� contri-

bution comes with a prefactor of −3, we can infer that
singlet-singlet or the triplet t0-singlet channels will always be
preferred over the triplet t0-triplet and the singlet-triplet
channels, respectively.

III. EFFECTIVE TWO-ORBITAL MODEL

For a specific discussion of the orbital effects in Fe-
pnictides, we need a simple tight-binding model that de-
scribes these materials. In particular, a choice of the hopping
parameters in the noninteracting Hamiltonian �1� has to be
made. In making this choice, we take into account the results
of band-structure calculations9–14 and try to reproduce as ac-
curately as possible the low-energy sector. The goal is to
reproduce not only the multipocket structure of the Fermi
surface but also the correct energy scales for the low-energy

modes. We note here that effective two-orbital models have
been already discussed in the literature,25–29 but they focus
exclusively on the degenerate dzx and dzy orbitals. However,
dxy is also known to play an important role in the formation
of the electron pockets, and it strongly mixes with the two
degenerate orbitals. Potentially important aspects of pairing
mechanism may occur because of this mixing between the
dxy orbital and either dzx or dzy, suggesting a three-orbital
minimal model for the Fe-pnictides.22 Our goal is to capture
some of this physics within a two-orbital model. Conse-
quently, we consider an effective model of the Fe-based ox-
ides consisting of two nondegenerate orbitals: the first corre-
sponds to the iron dxy orbital, while the second represents an
“effective orbital” that simulates the combination of dzx and
dzy. More precisely, the energy band associated with the sec-
ond orbital approximates the low-energy band structure of
dzx hybridized with dzy.

The intra-orbital hopping parameters that define the
model are tij

mm= �t�0,0� , t�1,0� , t�1,1� , t�0,2��, where ��x ,�y�= ��xj
−xi� , �yj −yi�� denotes a given hopping vector, as well as
those related to it by symmetry. The first orbital is character-
ized by the set of hoppings tij

11= �0.2,−0.32,0.17,
−0.015� eV. The proper energy scale is set by the nearest-
neighbor hopping t�1,0�=−0.32 eV.13,30 For the second or-
bital we use three different sets of parameters. If tij

22��tij
22�


= �0.18,0.22,0.16,0.07� eV, a hole pocket is generated
around the �= �� ,�� point �see Fig. 1�. Again, the energy
scale for the dispersion curve is determined by the choice of
the nearest-neighbor hopping in accordance with the band-
structure calculations.13,30 For a smaller hole pocket, which
would correspond to the doped case, we use tij

22��tij
22��

= �0.18,0.22,0.14,0.05� eV. To simulate the case when the
hole pockets are absent or have a very weak coherent spec-
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FIG. 1. �Color online� Energy dispersion for the effective two-
orbital model along the �0,0�→ �� ,0�→ �� ,��→ �0,0� path in mo-
mentum space. Orbital “1” corresponds to the iron dxy orbital, while
orbital “2” corresponds to an effective dzx-dzy combination. The
dispersion of the second orbital is shown for a set of hopping pa-
rameters corresponding to the presence of relatively large hole
pocket �see main text�. E1�2��k� is the diagonalized high-energy
�low-energy� band. Inset: zero energy contours inside the unfolded
Brillouin zone. The � point of the original Brillouin zone corre-
sponds to ��0,0� , �� ,���, while M corresponds to ��� ,0� , �0,���.
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tral weight,15 we use the set of hopping parameters tij
22

��tij
22��= �0.18,0.22,0.125,0.04� eV. Note that the only sig-

nificant change in the dispersion curve occurs in the vicinity
of the � point where the hole pocket is located �for details,
see the inset of Fig. 4�. Finally, the hybridization between the
two orbitals is described by �12�k�=4
 sin kx sin ky with 

=0.25 eV. The dispersion curves, diagonalized bands, and
zero energy contours are shown in Fig. 1. Note that our
model reproduces the two electron Fermi pockets predicted
by LDA calculations �in Fig. 1, M corresponds to the �0,��
and �� ,0� points of the unfolded Brillouin zone� but gener-
ates only one hole pocket at � �i.e., near �� ,���. We expect
the absence of a second hole pocket to play a minor role in
the qualitative aspects of the pairing mechanism, as one
pocket is enough for capturing the physics stemming from
the approximate nesting between the electron and the hole
Fermi pockets.

To place our effective model in the context of similar
two-band models for the iron-based superconductors, we
show in Fig. 2 a comparison with the dzx-dzy model from
Refs. 25–27. The high-energy bands, E1�k� and E+�k�, re-
spectively, which are responsible for the formation of the
electron pockets, have the same energy scale and very simi-
lar dispersions. By contrast, the low-energy band E−�k� of the
dzx-dzy model has a characteristic energy that is an order of
magnitude larger than the low-energy band E2�k� of the
present model. Particularly significant is the rapid dispersion
of E−�k� in the vicinity of �� ,��, which results, on one hand,
in a much larger Fermi energy for the hole pocket and, on the
other hand, in smaller values of the susceptibility. Our model
correctly takes into account the results of band-structure cal-
culations that give characteristic Fermi energies of about 0.2
eV for both types of pockets.

IV. RPA SUSCEPTIBILITIES AND EFFECTIVE PAIRING
INTERACTIONS

The RPA involves the summation of the whole series of
bubble diagrams and, within the formalism described in Sec.

II, it corresponds to the multiplication with the matrix

�1̌+ �̌0�c/s��̌�q��−1. The result depends critically on the struc-

ture of the matrices �̌0�c/s� and �̌�q�. Let us consider the case
corresponding to our model �and also to the degenerate or-
bital model� when the inter-orbital hybridization is real and
has even parity, i.e., �12�−k�=�12�k�. Within the SU�4� for-
malism, the coupling-constant matrix is diagonal, with com-
ponents given by Eq. �6�, while the bare susceptibility matrix
has the form,

�̌ =�
�00 �01 0 �03

�10 �11 0 �13

0 0 �22 0

�30 �31 0 �33

� , �13�

where the nonvanishing components are

�00�33� =
1

2
��̃11,11 + �̃22,22 � 2�̃12,21� ,

�11�22� = �̃11,22 � �̃12,21,

�03 = �30 =
1

2
��̃11,11 − �̃22,22� , �14�

�01 = �10 = �̃11,12 + �̃22,21,

�31 = �13 = �̃11,12 − �̃22,21. �15�

Note that the transverse orbital component �22 is decoupled
from the other channels and its RPA value will depend only
on �22

0�c/s�. By contrast, the spin �charge� susceptibility �00
always couples to the longitudinal orbital component �33. In
addition, in the presence of an inter-orbital hybridization,
these two components are coupled to the transverse orbital
susceptibility �11. All these couplings can significantly en-
hance the susceptibilities. To give an example, we show in
Fig. 3 the static spin susceptibility �00��=0� and the trans-
verse orbital susceptibility �11��=0� for the two-band model
studied in Ref. 26. The maximal eigenvalue of the suscepti-
bility matrix �dashed line in Fig. 3� is peaked near q
= �� /2,� /2� as a results of the mixing between �00 and �11.
Note that �01�10��q��0 while �31�13��q�=�30�03��q�=0 be-
cause of symmetry. At the RPA level, for an interaction, U
=U�=2.8 and J=J�=0, both �00 and �11 are strongly peaked
near q �right panel in Fig. 3�, indicating the proximity of a
spin-orbital instability. This instability is the result of the
spin channel ��=0� being coupled to one of the transverse
spin-orbital channels ��=1� due to the hybridization be-
tween orbitals. The strength of this coupling is determined by
the off-diagonal susceptibility �01�10�. Note that the numeri-
cal value of �01�10� is negligible everywhere except in the
vicinity of q where it has a peak �01�10�
−0.1.

Next, we turn our attention to the RPA analysis of the
effective two-band model described in Sec. III. Using this
simple model we want to address two basic questions: �i�
what is the dominant pairing channel? and �ii� what is the
specific contribution of the orbital degrees of freedom? We
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FIG. 2. �Color online� Comparison of the band structure of our
effective two-orbital model �E1 ,E2� with the band structure of the
dzx-dzy model from Refs. 25–27 �E+ ,E−� corresponding to a nearest-
neighbor hopping �t1�=1 eV and a chemical potential �=1.45 eV.
Notice the similarities between the high-energy bands, E1 and E+,
and the different energy scales of the lower-energy bands.
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find that the physics of the two-band model is rather nonuni-
versal, depending strongly on both the structure of the non-
interacting Hamiltonian and the form of the interaction.
However, within a reasonable parameter window we find that
�i� the dominant pairing channel is the orbital-triplet spin-
singlet channel and that �ii� the spin and orbital components
are strongly coupled and typically give comparable contribu-
tions to the effective pairing interaction W. The relative
weight of the spin channel is enhanced by increasing the size
of the hole pocket, which leads to nesting, and by increasing
the Hund coupling J. In the opposite limit the orbital effects
become dominant. In addition, we note that the symmetry of
the hybridization, which determines the off-diagonal suscep-
tibility �̃1221, plays a crucial role in determining the relative
strength of various contributions. Our present choice, �12�k
+Q�=−�12�k� for Q= �� ,0� or Q= �0,��, enhances the spin
component over the orbital-spin contributions. By contrast,
an even-symmetry choice would further enhance the role of
orbital fluctuations. We show that these coupled spin-orbital
fluctuations are important and cannot be ignored in intrinsi-
cally multi-orbital systems such as the iron-based supercon-
ducting oxides. In terms of the general scenarios described at
the end of Sec. II, we find scenario B as the most likely to be
realized within our effective two-orbital model.

The first step in the RPA analysis involves the calculation
of the bare susceptibilities �̃ij,i�j� for each of the three sets of
parameters describing our the two-orbital model, which were
discussed in Sec. III. The most significant parameter depen-
dence is seen in �̃22,22 as the second orbital is responsible for
the existence and size of the hole pocket. We show in Fig. 4
the intra-orbital susceptibility �̃22,22 corresponding to the
three different sets of hopping parameters �tij

22�x, with x
� �
 ,� ,��. The case �
� corresponds to a large hole pocket
�see the inset of Fig. 4� that produces an approximate nesting
with the electron pocket and generates a strong peak at
�� ,0�. This features becomes weaker as the hole pocket
shrinks, case ���, and eventually disappears in the absence of
the hole pocket, case ���, being replaced by a wide maxi-
mum near �� ,��.

What happens in the presence of an interaction? To reduce
the number of independent parameters we only consider the
case

U� = U − 2J, J� = J .

In the absence of Hund’s coupling, J=0, the RPA spin chan-
nel susceptibility �̌�s��q� diverges at the critical values of the
interaction Uc

�
�
0.75, Uc
���
0.85, and Uc

���
1.2 for the
three sets of orbital parameters, respectively. In the presence
of a hole pocket the instability occurs in the vicinity of
�� ,0�, while if only the electron pockets exist, the instability
occurs at �� ,��. In both cases there is a strong mixing be-
tween the pure spin and the longitudinal orbital-spin compo-
nents while the transverse orbital-spin components are prac-
tically decoupled. Including Hund’s coupling J strengthens
the �� ,0� instability or replaces the orbital-driven �� ,�� in-
stability with a spin-driven �� ,0� instability. The general
trends of the RPA susceptibility are shown in Fig. 5 for band
structures corresponding to two sets of band parameters, �
�small hole pocket� and � �no hole pocket�, and interactions
characterized by either J=0 or by a relatively strong Hund
coupling, J /U�0.35. We note that a nonvanishing J always
enhances the spin susceptibility while suppressing the longi-
tudinal orbital-spin component. However, in a more realistic
model exchange interactions between nearest-neighbor and
next-nearest-neighbor sites have to be considered.17–19,21 In
this case, the bare coupling-constant matrices �0�c/s� will ac-

quire momentum-dependent contributions J̃�q�. Depending
on the character �ferromagnetic, antiferromagnetic, or mixed�
of the exchange couplings, the spin susceptibility can be fur-
ther enhanced or, by contrary, suppressed in favor of the
orbital components. We stress that the inclusion of the ex-
change interaction is crucial as it can qualitatively change the
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FIG. 3. �Color online� Left panel: static spin susceptibility ��00;
red line� and static transverse orbital susceptibility ��11; green line�
for the two-orbital model studied in Ref. 26. The dash line repre-
sents the maximal eigenvalue of the ��� matrix. Right panel: largest
components of the spin-orbital susceptibility matrix in the RPA ap-
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signaling the presence of an instability. The instability is produced
by the coupling of the spin ��=0� and transverse spin-orbital ��
=1� modes due to a nonvanishing �01.
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 ,� ,��, for the second orbital �see main text�. The correspond-
ing dispersion curves in the vicinity of � �i.e., �� ,��� are shown in
the inset and are characterized by �
� a large hole pocket �red
squares�, ��� small hole pocket �green circles�, or ��� no hole
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mines the appearance of peaks in the susceptibility near �� ,0� due
to an approximate nesting between the electron and the hole Fermi
surfaces.
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susceptibilities and, implicitly, the nature of the possible in-
stabilities and that of the pairing mechanism.

We turn now our attention to the calculation of the effec-
tive pairing interaction Wab given by Eqs. �9� and �10�. We
show in Fig. 6 the momentum dependence of the dominant
effective couplings. The largest component is always the sec-
ond diagonal element of the orbital-triplet spin-singlet ma-
trix, �Wts�22. In the absence of a hole pocket, for J=0 �panel
�c� in Fig. 6�, �Wts�22�k� has a wide maximum at �� ,��,
while the other effective couplings have a much weaker mo-
mentum dependence. By contrast, if the hole pocket exists
�panels �a� and �b��, �Wts�22�k� is characterized by sharp

maxima in the vicinity of �� ,0�. These maxima are the con-
sequence of the approximate nesting between the hole and
electron Fermi surfaces. Note that the orbital-triplet spin-
singlet pair operator �Eq. �7�� is an even function of momen-
tum. Consequently, because of the of the structure near
�� ,0�, the superconducting gap will have s-type symmetry
with opposite signs on the hole and electron pockets. By
contrast, in the absence of the hole pockets and for J=0, the
�� ,�� maximum will enforce a d-type symmetry. The ex-
perimental evidence for the gap symmetry is rather contra-
dictory. Some point-contact Andreev reflection
experiments,31,32 as well as microwave33 and angle-resolved
photoemission spectroscopy �ARPES�34,35 measurements,
suggest a fully gaped superconductivity, which is consistent
with s-wave pairing. On the other hand, the results of other
point-contact Andreev reflection experiments,36 together with
NMR results37 and Hc1 magnetization measurements,38 sug-
gest a nodal gap function, consistent with d-wave or p-wave
pairing. Clearly, further work is necessary in order to clarify
this problem. Note that, regardless of symmetry, if paring
occurs in the orbital-triplet spin-singlet channel it originates
in the dzx-dzy “effective” orbital. However, because the off-
diagonal elements �Wts�12= �Wts�21 are nonzero, pairing is
also induced in the dxy orbital. Therefore, the resulting pair-
ing gap has two components which are characterized by two
different energy scales that can be obtained by numerically
solving a matrix gap equation. The gap equation can be de-
rived using standard procedures from a BCS-type mean-field
approximation of the effective Hamiltonian �8�. Notice that
for large Hund’s couplings �panels �b� and �d� in Fig. 6� the
relation J�U� is satisfied and the coupling constant in the
orbital-singlet spin-triplet channel Wst becomes negative,22

opening the possibility of s-wave pairing in this channel.
Nonetheless, in the presence of a hole pocket—case �b�—
because of the dominant contribution from �Wts�22, pairing
realizes in the orbital-triplet spin-singlet channel. On the
other hand, in case �d�—with no hole pocket and strong
J—there are several closely competing channels. Finally, we
note that for most of the parameter space our model predicts
intra-orbital rather than inter-orbital pairing. If the Hund cou-
pling is small, scenario B is realized and pairing occurs in
the orbital-triplet spin-singlet channel with �t2s as the stron-
gest component. For large J, in the presence of a hole pocket,
the relative importance of the off-diagonal susceptibility
�̃12,21 diminishes and scenario A is realized. However, pair-
ing still occurs in the orbital-triplet spin-singlet channel and
is dominated by the second intra-orbital component. The
only possibility for inter-orbital pairing occurs in the absence
of a hole pocket and for large Hund’s couplings when pairing
may occur in the orbital-singlet spin-singlet or in the orbital-
singlet spin-triplet channels, depending of the details of the
model. However, we emphasize again that these results are
highly nonuniversal and they strongly depend, for example,
on the number of orbitals considered, on the symmetry and
strength of the hybridization, or on the values of possible
nonlocal interactions.

V. SUMMARY AND CONCLUSIONS

In summary, we propose a paradigm for superconductivity
in the new Fe-based materials where the pairing is caused by
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orbital fluctuations strongly coupled to spin fluctuations in
the renormalized multiband ground state. We test our theo-
retical idea by carrying out an RPA-type calculation using a
minimal two-orbital model consistent with the low-energy
bands determined by first-principles band-structure calcula-
tions. We find that the intra-orbital pairing, rather than the
inter-orbital or the interband pairings, mediated by coupled
spin-orbital fluctuations is the driving mechanism here. One
specific falsifiable prediction of our paradigm is that if the
parent compound is not multiband �thus, rendering orbital
fluctuations relatively unimportant�, then the system would
not be superconducting �or will have a rather low transition
temperature�. Our numerical analysis of the effective two-
orbital model suggests several tasks and directions for future
studies. �i� It is crucial to determine the size of the Fermi
surfaces and the relative strength of the quasiparticles on the
electron and hole pockets for a relevant doping range. If, for

example, the quasiparticle residue takes significantly differ-
ent values on the two types of Fermi surfaces, all the features
coming from their approximate nesting will be strongly sup-
pressed. �ii� It is necessary to know exactly the symmetry of
the inter-orbital hybridization and to have a good estimate of
its strength. A model that just reproduces the correct low-
energy band structure is not necessarily correct. The symme-
try of the inter-orbital mixing terms plays a key role in es-
tablishing the relative weight and the couplings between
various spin, charge, and orbital modes. �iii� A realistic tight-
binding model of the Fe-pnictides should include short-range
interaction terms. The nature and the strength of these inter-
actions have direct consequences on the possible instabili-
ties, as well as on the superconducting mechanism.
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